
Code Optimization and Parallelization on the Origins

- Looking from Users' Perspective

Yan-Tyng Sherry Chang

NASA Advanced Supercomputing Division

NASA Ames Research Center

Moffett Field, CA, USA

ABSTRACT" Parallel machines are becoming the main compute engines for high performance computing. Despite

their increasing popularity, it is still a challenge for most users to learn the basic techniques to optimize/parallelize
their codes on such platforms. In this paper, we present some experiences on learning these techniques for the Origin
systems at the NASA Advanced Supercomputing Division. Emphasis of this paper will be on a few essential issues

(with examples) that general users should master when they work with the Origins as well as other parallel systems.

1. Introduction

Parallel machines such as the IBM SP, the Compaq Alpha
servers, the SGI Origins 2000 and 3000, etc., are becoming the

main compute engines for high performance computing. For
example, for the past few years the NASA Advanced
Supercomputing (NAS) Division at NASA Ames has been

working closely with SGI to bring increasingly larger single
system image Origins into production. At present, many large

Origin 2000 (O2K) machines (of sizes 64p, 128p, 256p, and
512p) at NAS are used by scientists for production work.
Upgrade of one of these O2K production machines into an

O3K is currently underway. In addition, the first 1024-
processor single system image shared memory O3K machine,

designed under collaborative effort between SGI and NAS,
was built in the summer of 2001. This machine has since been

subjected to rigorous testing and improvement by NAS and

SGI staff in order to deliver the best possible performance for

large applications and to bring this machine into production.
Despite the increasing popularity of parallel machines, it is

still a challenge for most users to learn how to work with them
in order to achieve good performance for their codes. In
contrast, obtaining good performance on traditional vector
systems such as the Cray C90s seems relatively easy and users

usually do not have to change their codes much to achieve this
goal. The relatively difficult task of optimizing codes on the

parallel machines is rooted in the complexity of the hardware
and software (operating system, compilers, libraries, tools,

etc.) design driven by the architecture of these systems. In the
following, some experiences are presented on learning the

optimziation and parallelization techniques for the Origins at

NAS. Although the discussions are limited to the SGI Origins,
many concepts described in this paper should be applicable to
other parallel systems as well.

2. Users' Perspective

For the O2K and O3K machines, there are quite a few
sources of information provided by SGI where users can

obtain knowledge about them, including: (1) fee-based

training and/or workshops, (2) the annual developer's
conference, and (3) SGI on-line library. Among them, the SGI

document 007-3430-002, entitled "Origin 2000 and Onyx

Performance Tuning and Optimization Guide", is one that is

easily accessible to all and provides very thorough
information. In addition, most of the information in that

document is also applicable to the O3K machines. However,
learning from that document can be an enormous task since it

is very extensive (with more than 300 pages) and

consequently, readers can get lost easily. Furthermore, that
document lacks detailed explanation of one of the most
fundamental and critical issues, namely, the cache structure,

which is a major bottleneck in learning to work with parallel

systems.
The important role of "cache" is witnessed in the steps

involved in code optimization and parallelization. These steps,
as recommended by SGI, are:

For single-processor codes

1. Get the right answers
2. Use existing tuned code (-lm, -lfastm, -lscs)
3. Find out where to tune

4. Let the compiler do the work
5. Tune cache performance

For multi-processor codes
6. Tune for 1-cpu first
7. Parallelize codes

8. Identify and solve bottlenecks
9. Fix false sharing

10. Tune for data placement

For single-processor codes, in step 1, 'get the right answers'
on the Origins implies that users have to take care of some

porting issues such as data formats, availability of certain
libraries, compiler flags to use, and round-off differences, etc.

In addition, debugging may be required and it may be a little
tedious. Otherwise, step 1 is straight-forward.

In step 2, 'use existing tuned code' refers to using SGI's
math (-lm, -lfastm) and scientific libraries (-lscs) in which

many routines have been tuned for the Origin's hardware. For
example, the standard math library includes special "vector

intrinsics" (i.e., vectorized version of certain functions) which
take advantage of software pipelining capabilities of R10000

andRI2000CPUstofill instructionunitsin theoperation.In
addition,manyroutinesin theSGI/CrayScientificLibrary
(SCSL)havebeenoptimizedfor goodcacheperformance.
Thisstepdoesnot requireuser-interventionandthusis
straight-forward.

Instep3,'findoutwheretotune;usuallytheprofilingtools
perfexorSpeedShopareusedtoanalyzetheperformanceofa
codeandtohelpidentifywhatacodeissufferingandwhereit
occurs.Thedifficultiesin thissteparetwo-fold.First,for a
generaluser,understandinghowperfexandSpeedShopwork
andwhattheiroutputsrevealis anon-trivialtask.Second,
manycodesrunningontheOriginsmaybeidentifiedasnot
cachefriendly.Yet,ausermaynotknowwhyit occursand
how to resolveit. Fortunately,someof the bad cache
performanceproblemscanbe resolvedby the compilers
automatically.

In step4, 'let the compiler do the work', the optimization

done at -02 may relieve some of the cache performance

problems but it is not as effective as -O3. At -03, software
pipelining (-SWP) and loop nest optimizations (-LNO) are
used automatically to improve cache and instruction

scheduling. Many techniques in LNO such as padding, loop
interchange, loop fusion, cache blocking and prefetching, etc.,
are very useful for improving cache performance. However,

depending on the nature of the code, the settings in -03 may
need to be fine-tuned for ultimate performance. It is also

possible that -03 may not be the right choice for a code. In
these cases, users may want to go to step 5 and tune the cache

performance themselves.

In step 5, 'tune cache performance' manually is required
when the compiler does not or dare not optimize the code for
best cache performance. The same techniques used in -03 can
be applied manually. To do this step successfully, it is

important that users first have a thorough understanding of the
cache structures, the principles and techniques of good cache

performance, the nature of his/her own code and the profiling
tools to help diagnose cache problems. For general users, this

is the major bottleneck in working with the Origins.
For multiple-processor codes, as shown in step 6, the first

thing to do is to make sure the code has been optimized for
running with a single processor. In step 7, users then try to

parallelize the code as much as possible using either the
MIPSpro Auto-Parallelizing Option (APO) through the
compiler or various parallel programming models such as

OpenMP, MPI or some sort of multi-level parallelism
approach.

In step 8, 'identify and solve bottlenecks', users first analyze
the performance of the parallel code using simple metrics such

as the speedup or the scaling factor (in terms of walltime used

or MFLOPS) to see if the code has been properly parallelized.
If the parallel performance is far from ideal, SGI's perfex and

SpeedShop or other verndor's profiling tools, (such as
CAPTOOL that performs data dependency analysis of a code)

can be used to diagnose the problems. For example, is the
fraction of the code running in serial negligible compared to

the fraction running in parallel? If the serial fraction is
significant, try to parallelize it if possible. Another question to

ask is whether the loads among the processes have been well-

balanced. Keep in mind that the overall performance of a code
is determined by the slowest process. If load imbalance is a

problem, it may be resolved by redistributing the work load of
each process.

In step 9, one examines if false sharing is a problem. False
sharing is tied with the concepts of cache coherency and cache

contention among different processors of a multi-processor
program. Understanding these concepts also requires

knowledge of the cache structure. False sharing is best

diagnosed with the hardware event counters 29 and 31.
In step 10, if all have been tried and the performance is still

bad, one then examines if poor data placement is the cause. A
few tools are described later in this paper that may help
diagnose this problem.

In summary, code optimization and parallelization on the
Origins, as well as many other parallel systems, is a multi-

faceted task which includes working with both the hardware

(CPU, counters, cache, memory, etc.) and software (parallel
programming models, compilers, debuggers, libraries, tools,
etc.). For general users, trying to learn everything at once can

be very confusing and frustrating. Instead, a thorough
understanding of a few key issues is a better approach and it

provides a better foundation for learning other issues. The few
key issues to master, in my own view, include: (1) the memory
hierarchy, (2) the cache structure, (3) cache coherency and

cache contention, and (4) non-uniform memory access, page
and data placement. In this paper, descriptions of these key

concepts and a few examples to further clarify them are
provided to assist users in overcoming these learning
bottlenecks.

3. The Memory Hierarchy

The building blocks of the Origins are the "nodes". Each

node contains multiple CPUs (up to 2 for O2K; up to 4 for
O3K), a secondary cache (L2-cache) external to each CPU and

some memory. Nodes are connected by some inter-connect
and the communication among them are regulated by the hub'

(used in O2K) or "Bedrock memory controller" (used in O3K)
in each node. Within each CPU, there are also the registers

and the primary cache (L 1-cache).
During processing, the CPU can only use data in registers,

and it can load data into registers only from the primary cache.

So data must be brought into the primary cache before it can
be used in calculations. The primary cache can obtain data

only from the secondary cache, so all data in the primary
cache is simultaneously resident in the secondary cache. The

secondary cache obtains its data from main memory. The

memory location of the desired data can be in local memory,
remote memory or disk. Table 1 shows the memory hierarchy,

the relative total capacity and the memory access latency (in
CPU clock cycle) at each level. The values of the capacity and

latency listed are approximate and they do vary for systems
with different hardware. Nevertheless, all Origins exhibit the

same trend. That is, with each increasing level, the capacity

becomes larger since the hardware becomes cheaper and more
affordable. Yet at the same time, the latency of data access

becomesgreater(cheaperbutslowerhardware).A missat
eachlevelof thememoryhierarchymultipliesthelatencyby
anorderof magnitudeor more.Thus,tuninga codeto be
cachefriendly(meaningdiminishing/reducingaccessesto
mainmemory,especiallyremotememoryor disksuchthat
all/mostaccessesaresatisfiedby caches)is an important
factorforgettinggoodperformanceontheOrigins.

Memory
Level
registers
L1cache

Total

Capacity

Bytes
KB

Maximum Latency
(in CPU cycles)

2-3
L2 cache -MB 8-10

-GB 75-200Local

memory
Remote

Memory
disk

<TB > 200

>TB Long long time

Table 1. Memory Hierarchy on the Origins

4. The Cache Structure

A cache friendly code exhibits characteristics of minimum
accesses to main memory and nearly 100% hit rate on caches.

To get the most benefit when data is already in cache, one
should exercise two guidelines. The first one is "temporal

locality" which means that one should use a cache line
intensively while it's in cache and not to return to it after it has

been written back to memory. The reason for practicing
temporal locality is to avoid 'paying' the higher latency more
than once. The second guideline is "spatial locality" which

means that one should use every word in the same cache line
while it is in cache. The reason for practicing spatial locality is

due to the nature of a cache line explained below.

4.1 Cache Line and Cache Size

A cache line is the unit of transfer between the main

memory and L2 cache or between L2 and L1 caches. On the
Origins, each cache line of the L2 cache is 128 bytes long.

This is equivalent to 32 words if each word is 4 bytes long.
The L2 cache is used jointly for instructions and data. For L1

cache, cache for instructions and that for data are separated.
The cache line is 64 bytes long for L 1-instruction cache and is

32 bytes (= 8 four-byte words) for L l-data cache. The
consequence of having more than 1 word in each cache line is

that when a data is accessed, its nearby consecutive data (ex:
the other 7 words in an LI cache line) is accessed

automatically, thus spatial locality becomes an important
practice.

Table 2 lists the total size for each cache, the length of a

cache line and the corresponding number of cache lines for
Ll-instruction, Ll-data, and L2-unified caches. On the

Origins, the L2-cache size is 4MB for the RI0000 processors

and 8MB for the R12000 processors.

Cache Cache Size Cache # of
Type Line Cache

L 1- 32 KB 64 B
instruction

Ll-data 32 KB 32 B

L2-unified 128 B4 MB (R 10000)
8 MB (R 12000)

Table 2. Cache Structure on the Origins

Lines
512

1024

32768;
65536

4.2 Two Way Set Associative

Before a data (a memory location) can be brought in from

memory, a mapping has to be done to determine where the
data should reside in cache. Since the size of a cache is much

smaller than the size of the memory, many memory locations
will map to an identical cache location. There are two extreme

mapping methods. The first one is called a 'direct mapping
method' in which a data can only map to one specific cache

location in one specific cache line. The benefit of this method

is that it is straight-forward for the processor to keep track of
data in cache. If a data needed is not found in its designated
cache line, then one can make the conclusion that the data is
not in cache. The drawback of this method is that if two or

more sets of data that map to the same cache line are needed
one after the other, thrashing occurs such that data in the same

cache line is always being flushed back to memory, resulting

in bad performance due to excessive waste in memory latency.
The second extreme is called a 'fully associative mapping

method' in which data can map to ANY cache line in cache.

The benefit is that the likelihood of thrashing is reduced to
minimum. The drawback is that it is much more complicated
and costly for the processor to check all cache lines for the

desired data or for an empty or least-recently used cache line
in order to load in new data.

The mapping method used on the Origins is 'two-way set

associative'. It is a compromise between the two extremes
described above. With two-way set associativity, cache is
divided into 'two ways' and the set associativity restricts each

data (a memory location) to a "set" (also called a congruence
class) of two cache lines (one in each way) within its own set.
The algorithm for determining which set a data should map to
is as follows:

Address of data/(cache size of each way)

= cache tag, remainder m
m/cache line size

= set number, remainder n

Forexample,assumingtheL2cachesizeis 4MB,thenthe
cachesizeof"eachway"is4MB/2way= 2MB=2"'21bytes.
ThesizeofanL2 cache line is 128B=2"'7 Bytes. The address

on the Origins is byte-addressable. Thus, in binary

representation, the address of a data/2**21 gives the value of
the cache tag represented by the high bits (bits 21 and above).
The value in the lower 21 bits (bits 0-20) is the remainder m.
The (value of m)/(2"'7) determines which set of the cache (set

number) represented by the value in bits 7-20. The value in the
lowest bits (bits 0-6) is the remainder n and it determines the

byte-location in the cache line this data should reside. Thus, if
the addresses of two data have identical value in bits 7-20,

these two data will map to the same set of cache lines.

Because of the many-to-one mapping between memory and

cache set, the cache tag is used by the processor to identify if
data reside in a cache line are those needed by the processor.

4.3 Least Recently Used Policy

Since the set of two cache lines that can be used by a data is
determined by the middle bits 7-20, any other data with the

same middle bit value also map to the same set. If two data,
assuming they are not near each other in their memory

locations, that map to the same set are needed, they can both
be loaded into cache. One of them is loaded into one cache
line and the other data will be loaded into the other cache line

in the same set. When a third data that also maps to the same
set is needed, one of the cache lines in the set containing the

first two data has to be flushed in order to be used by the third
data. The rule used on the Origins in determining which of the
two cache lines should be flushed is such that the one that is

least recently used (read or written) is selected.

4.4 Quiz

Assume the L2 cache is two-way set associative, its size is
4MB and each cache line is 128B long,

(1) if the memory locations between variable a and variable

b are exactly 2MB apart, do they map to the same set?
(2) If another variable c is exactly 2MB apart from b, does

c map to the same set as a and/or b?
(3) If a, b, and c are needed one after another, does

thrashing occur?
(4) If the L2 cache size is 8MB, while the rest are the same,

what are the answers to questions 1,2 and 3?

(5) If everything stays the same as in (4) except that the L2

cache is now four-way set associative, what are the
answers to questions 1, 2 and 3?

Assume the L1 cache is two-way set associative, its size is

32KB and each cache line is 32B long,
(6) Do a, b, and c map to the same L 1 cache set?

(7) If variable d is 32B away from a, does d map to the
same L1 cache set as a?

4.5 Practices of Good Cache Use

Programs that exhibit temporal locality and spatial locality

should achieve good performance. In practice, one should
follow these guidelines when designing his/her programs:

a. Use stride-1 accesses

b. Avoid power-of-2 sized arrays or do padding

c. Group together data used at the same time

The MIPSpro compilers used on the Origins provide many

options to tune cache performance. Among them, the

optimization level at -03 provides software pipelining (-
SWP) and loop nest optimization (-LNO) that can better

schedule instructions and data for cache performance. The
major optimizations by LNO include:

a. array padding

b. loop interchange
c. outer loop unrolling

d. cache blocking
e. loop fusion

f. loop fission
g. prefetching
h. gather-scatter
i. vector intrinsics

The man page for LNO provides more information about these
techniques. Some of these techniques can also be applied

manually if the compiler fails to tune a code for cache
performance or if the higher level of optimization at -03 is not
suitable for a code.

4.6 Detecting Cache Performance Problem

Two profiling tools, perfex and SpeedShop, provided by

SGI can be used to diagnose performance problems. Perfex is
generally used to get a quick diagnosis of what the code may
be suffering. SpeedShop is used to find out where (which
subroutine, function, line number the bottleneck occurs.

4.6.1 Using perfex

Using the profiling tool perfex, the values of a few hardware
event counters listed below are good indicators of poor cache

performance. Among them, the miss handling table occupancy
(counter 4) is available only for the R12000 CPUs. Perfex also

provides some useful statistics and ranges of estimated tree for
each event if the -y option is turned on. Some of the statistics

also provide indication of cache performance.

Hardware counters:

a. event counter 26 - secondary data cache misses

b. event counter 25 - primary data cache misses
c. event counter 10 - secondary instruction cache

misses

4

d. eventcounter9 - primaryinstructioncache
misses

e. eventcounter23- TLBmisses
f. event counter4 Miss HandlingTable

occupancy

Usefulperfexstatisticsforcacheperformancediagnostics:

a. Primary cache line reuse

The is the number of times, on average, that a primary data
cache line is used after it has been moved into the cache. It is

calculated as graduated loads plus graduated stores minus
primary data cache misses, all divided by primary data cache
misses.

b. Secondary Cache Line Reuse

The is the number of times, on average, that a secondary data
cache line is used after it has been moved into the cache. It is

calculated as primary data cache misses minus secondary data
cache misses, all divided by secondary data cache misses.

c. Primary Data Cache Hit Rate
This is the fraction of data accesses that are satisfied from a

cache line already resident in the primary data cache. It is
calculated as 1.0 - (primary data cache misses divided by the

sum of graduated loads and graduated stores).

d. Secondary Data Cache Hit Rate
This is the fraction of data accesses that are satisfied from a

cache line already resident in the secondary data cache. It is

calculated as 1.0 - (secondary data cache misses divided by
primary data cache misses).

e. Cache misses in flight per cycle (average)

This is the count of event 4 (Miss Handling Table (MHT)
population) divided by cycles. It can range between 0 and 5
and represents the average number of cache misses of any

kind that are outstanding per cycle.

To use perfex, no re-compilation is needed. When the perfex
command is executed, profiling will take place and the output

will be sent to stderr. For example,

perfex -a -x -y ./a.out

or

perfex -e 26 ./a.out

4.6.2 Using SpeedShop

SpeedShop is the generic name for an integrated package of
performance tools to run performance experiments on

executables, and to examine the results of those experiments.

SpeedShop provides a few profiling experiment types:

a. User time

b. PC sampling
c. Ideal time (changed to "bbcounts" in SpeedShop

1.4.3)
d. Hardware counter profiling

e. Mpi profiling

f. Floating point exception tracing

g. Heap tracing
h. I/O tracing

Brief description of a few commonly used experiments are
provided below:

usertime: It returns CPU time, the time your program is

actually running plus the time the operating system is
performing services for your program. It uses statistical

callstack profiling, with a time sample interval of 30
milliseconds.

[f]pcsamp: It returns the estimated actual CPU time for each
source code line, machine code line, and function in your

program. It uses statistical PC sampling with a sample interval
of 10 milliseconds. If the optional f prefix is specified, a

sample interval of 1 millisecond will be used.

Ideal: It returns the best possible time of which the program is
capable. It uses basic-block counting, done by instrumenting
the executable.

[f]dsc_hwc: This is one of the many options from hardware
counter profiling. It uses statistical PC sampling, based on
overflows of the secondary data-cache miss counter (counter

26), at an overflow interval of 131. If the optional f prefix is
used, the overflow interval will be 29.

To use SpeedShop, no re-compilation is needed. The
command ssrun is used to collect SpeedShop performance
data and the command prof is used to analyze and display the

data collected by ssrun. For example,

ssrun -usertime a.out

prof a.out.usertime.m754877

4. 7 Cache Thrashing Example

In appendix A, a sample program that exhibits cache
thrashing behavior is provided. This program is modified from

example 6.5 of the SGI document "Origin 2000 and Onyx
Performance Tuning and Optimization Guide", The size of

each of the four arrays (ex: real*4 a(1024,1024)) is exactly
4MB and thus accessing the (i,j) element of each array at the

same time causes cache thrashing if the L2 cache size is either
4MB or 8MB. To examine the effect of optimization by the

compiler on the performance of this code, it is compiled with -

O0, -O1, -02 and -03 separately. During execution, 1
processor (RIO000 CPU, 250MHz with 4MB L2 cache on an
O2K machine) is used.

4. Z I Performance

The first four columns of Figure 1 show the user cpu time

used by this program at each level of optimization. As seen in

this figure, the performance at -03 is the best and is

contributed mostly by the better cache utilization at this level
of optimization. A similar performance (compared to that with

-03) can be obtained manually without the optimization by
compiler. By modifying the code such that the size of each of
the four arrays is 1025"1024, rather than 1024"1024, will

prevent a(i,j), b(i,j), c(i,j) and d(i,j) from mapping to the same

set of cache lines, thus no cache thrashing will occur. This is
demonstrated in the last column of Figure 1 for which the

manually modified code is compiled with -O0.

3

2.5

2

1.5

1

0.5

0

O0 01 02 03 O0-pad

4. Z 2 Diagnosis

The bad performance of the original code when it is
compiled with -O0 is diagnosed with perfex as shown in
Table 3. With "perfex -a -x -y", it shows that event counter 26

(L2 data cache misses) contributes the most to the time used
by the program.

0

16

26

14

23

2

18

3

19

22

event Counter

value
Typical
time

2.614618Cycles 653654512

Cycles 653654512 2.614618
4178336Secondary data

cache misses

1.261857

ALU/FPU progress 82554064 0.330216

cycles
Quadwords written 8635504 0.221069
back from scache

Primary data cache 4348624 0.156724
misses

Issued loads 29675728 0.118703

Graduated loads 29524944 0. I 18100

Issued stores 29524944 0.118100

Graduated stores 11248768 0.044995

Quadwords written 2475040 0.038116

back from primary
data cache

21 Graduatedfloatingpointinstructions I I 0.03]
[7787744 1151

Table 3. Some counter values and typical time extracted

from perfex -a -x -y output

Table 4 shows that cache utilization, especially L2, has

been improved greatly either by manually padding the arrays
or by using a high level of optimization -03 of the compiler.

-O0 -03 -O0-
manual-

padding
L1 Data Cache Misses 4,348,624 20,880 361,888

L 1 Cache Line Reuse 8.37 1572.17 114.06

L1 Cache Hit Rate 0.89 1.0 0.99

L2 Data Cache Misses 4,178,336 16 81,168

L2 Cache Line Reuse 0.04 129.50 3.46
L2 Cache Hit Rate 0.039 0.99 0.78

MFLOPS 2.97 24.27 15.56

Table 4. Comparison of L1 cache, L2 cache and MFLOPS
performances

The location in the original code where the bad cache

performance (compiled with -O0) occurs can be detected
using ssrun. The results of three experiments are given below
to demonstrate how to use the data to draw the conclusion.

These experiments are (1) fpcsamp, (2) ideal, and (3) dsc_hwc
(hardware counter 26 for secondary data cache misses). The

outputs from prof are quite extensive. For clarity, only data
that are relevant to the discussion below are included.

(1) prof-I L2 cache_thrash.fpcsamp.m755026

Output:
Function list, in descending order by time
secs function (dso: file, line)

2.451 12 cache_thrashing (L2_cache_thrash:
L2_cache_thrash.f, 1)
0.370 _RANF_4 (libfortran.so: random.c, 154)

Line list, in descending order by function-time and then
line number

secs function (dso: file, line)

2.339 12_cache_thrashing (L2_cache_thrash:
L2 cache thrash.f, 16)

In its "function list" output, it is shown that the program

spends 0.370 seconds on calling the function random number
generator. It spends 2.451 seconds on the rest of the main

program. From the "line list" output, it shows that most time is
spent in line 16 (see program in Appendix A) of this program.

(2) prof L2_cache_thrash.ideal.m 1838173

Output:
Function list, in descending order by exclusive ideal time
secs function (dso: file, line)

0.478 L2 cache_thrashing

(L2_cache thrash: L2_cache_thrash.f, 1)
0.340 _RANF_4 (libfortran.so: random.c, 154)

From this output, it is shown that "ideally", the program,

excluding calling the random number generator, should take
about 0.478 seconds. This is much shorter than the 2.451

seconds actually used. Thus, it indicates that the program can
be improved significantly.

(3) prof-I L2_cache_thrash.dsc_hwc.m1225967

Output:

Function list, in descending order by counts
counts % function (dso: file, line)

4159250 100.0 L2_cache_thrashing
(L2_cache thrash: L2 cache_thrash.f, 1)

Line list, in descending order by function-time and then
line number

counts % function (dso: file, line)

4158988 100,0 L2_cache_thrashing
(L2 cache_thrash: L2_cache_thrash.f, 16)

This output shows that 100% of L2 cache misses occur in
line 16 of the program.

5. Cache Coherency and Cache Contention

In a parallel program, a data can be accessed simultaneously
by multiple processors. Since the CPU only reads and writes
data in its cache, every CPU that accesses the same data has a

copy in its own cache. Thus, multiple copies of this data are
available from different caches of different processors. If no

CPU that has a copy modifies the data (i.e., CPU reads but not

writes), each CPU simply uses its own cached copy and no
interruption occurs. However, if one CPU modifies a shared
data or a shared cache line, this CPU has to become the

exclusive owner of the cache line. As a consequence, the
copies in the other CPUs become 'invalid' immediately and
these CPUs are prevented from using the invalid copies. The
new value for this data has to be fetched from the CPU that

'owns' the data after it finishes updating the data. The

coordination and synchronization to ensure that all cached
copies of data are true reflections of the data in main memory

is called cache coherency. On the Origins, maintaining cache
coherency is the responsibility of the 'hub' located outside of
the CPU.

Cache contention is a phenomenon that multiple CPUs

alternatively and repeatedly update the same cache line. Thus
each CPU has to become the exclusive owner of that cache

line in turn. This will slow down performance dramatically.
Data that are mostly read and rarely written do not cause cache

contention for parallel programs.
There are two variations of cache contention. The first one

is called memory contention in which two or more CPUs try to

update the same variables. The second one is called false
sharing in which the CPUs repeatedly update different

variables that occupy the same cache line. Memory contention
usually occurs due to the algorithm of a program. Fixing it

may require changing the algorithm. On the contrary, false
sharing usually occurs unintentionally and can be fixed much

easily.

5.1 Detecting Cache Contention

a. performance does not scale
b. event counter 31 - store or prefetch-exclusive to

shared block
c. event counter 29 - external invalidation hits in

Scache

When the scaling of a code is poor, one first checks if it is

caused by cache contention. The R10000 and R12000 event
counter 31 is the best indicator of cache contention between

CPUs. The CPU that accumulates a high count of event 31 is

repeatedly modifying shared data. Other CPUs that have a
copy of the modified cache line will be sent invalidations.
Another good indicator of cache contention is event 29. The

CPU that produces a high count of event 29 is being slowed
because it is using shared data that is being updated by a

different CPU. The CPU doing the updating generates event
31.

To get estimates of the counts for event 29 and 31, use

perfex -a -mp ./a.out (or perfex -a -x -y -mp ./a.out)

One can get more accurate counts for these two events
using, for example,

perfex -e 29 -mp ./a.out

or

setenv SPEEDSHOP_HWC NUMBER 29
setenv SPEEDSHOP_HWC COUNTER_OVERFLOW 99

ssrun -exp prof_hwc ./a.out
prof a.out.prof._hwc.m 1234 > prof.m 1234.output

5.2 False Sharing Example

25

20

15

10

5

0 "

/

2 3

0.5

i

0.4

0.3

0.2

[
0.1

0
2 3 4

In appendix B, a sample program that exhibits false sharing
behavior is provided. This program is modified from example
8.5 of the SGI document "Origin 2000 and Onyx Performance

Tuning and Optimization Guide". When this program is

executed with 4 processors, in the subroutine sum85 of this
program, s(1) is updated by processor 1 while at the same

time, s(2) is being updated by processor 2, and so on. Since
the size of s is only 4 words, all elements of s are likely to

reside in the same cache line (both in L1 and L2 caches).

Thus, each processor has to gain exclusive ownership of this
cache line when updating s(i), resulting in false sharing.

15

lO

5

o

2 3 4

0.5

0,4

0.3

0.2

0.I

1 2 3 4

5.2. I Performance

In figure 2, the performances of this code running with 1, 2
and 4 processors (RI0000 CPU, 250MHz with 4MB L2 cache

on an O2K machine) are shown. The performances are
measured with the 'walltime' (in seconds, reported by t3 in the

program) spent on executing the subroutine where s(i) is
updated. When the code is compiled with -O0 -mp, the

performances with 2 and 4 cpus not only do not speedup
compared to that with 1 cpu, they are much worse. The same

behavior is seen when the code is compiled with -O 1 -mp.
Fortunately, false sharing is fixed for this program by the

compiler when -O2 or -03 is used. As shown in figure 2(a)

and figure 2(b), with -02 or -03, the performances with 2
cpus or 4 cpus are better than that with 1 cpu. In addition, the

performances now scale with the increased number of CPUs
used.

Fixing false sharing for this program manually is also quite
straight-forward. One can either rewrite the code such that a

temporary variable, private to each thread, is used in the place
of s(i) or change array s(4) to s(32,4) and replace s(i) with

s(l,i) in the subroutine. This second approach provides
padding of 32 words between s(1,1) and s(l,2) where s(1,1) is
to be updated by processor 1 and s(1,2) is to be updated by

processor 2. Since s(1,1) and s(l,2) are now 32 words apart,

they will not reside in the same cache line for either LI or L2
caches, thus preventing false sharing. Using this second

approach, figure 3(a-b) shows the performances of the
modified code at -O0, -O1, -02 and -03 when 1, 2 or 4 CPU's

are used. The performances at -O2 and -O3 are almost

identical to the original code. But the performances at -O0 and
-O1 with 2 or 4 CPUs have not only improved significantly

but also showed proper speedup with the increased number of
CPUs used.

5.2.2 Diagnosis

For the original program, the fact that performances do not

scale gives an indication that false sharing is occurring (with -
O0 and -O1). This can be further validated by using event

counters 29 and 31. As a demonstration, 'perfex -e 29 -mp' and
'perfex -e 31 -mp' are used to obtain the counts for each
thread. Table 5 shows the comparisons of these counter values

of the original program (with false sharing) and the modified

program (no false sharing). The results shown here are
obtained when the two programs are compiled with -O0.

Counter 29

Counter 31

False Sharing

1 cpu 4 cpus
3,766 482,491

487,530

539,327

516,084

0 991,489

1,020,035

479,600

535,563

No False Sharing

1 cpu 4 cpus
4,643 1,638

1,796

2,060

2,338
0 112

110

106

721

Table 5. Counts of event 29 and event 31 for the

example

false sharing

For event counter 29, the values obtained for each thread of

the 4 CPUs run for the original program (with false sharing)
are much larger than those obtained at 1 CPU for the same

program and those at both 1 CPU and 4 CPUs for the modified
program with no false sharing. For event counter 31, the
values of the two 1 CPU runs (one for the original and one for

the modified program) are both zero. The values for each

thread of the 4CPUs run for the original program (with false
sharing) are much larger than those obtained for each thread of
the 4 CPU run for the modified program (no false sharing).
Thus, the much larger counts of events 29 and 31 when

multiple processors are used for the original program provide

definitive proof that false sharing indeed occurs.

6. Non-Uniform Memory Access (NUMA)

For a cache friendly parallel program, memory requests are
satisfied primarily by cache. Thus, the performance is not

determined by the actual location of a data in physical
memory. For non-cache friendly programs, on the contrary,

memory requests are satisfied by main memory and thus the
placement of data in memory plays a crucial role in

performance.
On the Origins, the memory access model used is shared

memory NUMA model. In this model the memory is

physically distributed amongst the processors, but maintains a
global address space. Thus, a processor knows the address of a

data that resides in the memory of a different processor. The
memory is still shared, but access time will differ depending

onwhethertherequestedmemoryaddressislocalorremoteto
therequestingprocessor.Remotememoryaccessrequires
communicationthroughtheinter-connectnetworkandthus
takesadditionaltime.FortheO2Ks,asshowninTable6, the

latency to load a cache line from local memory is about 485ns.

If the data has to be accessed from a remote memory that is n-
hops away (through n-routers), the latency is about

(485+n*100)ns. The values listed in Table 6 do vary
depending on the topology and hardware of the memory and

inter-connect systems. Nevertheless, it shows that the farther

the data, the longer it takes to access it. Tuning non-cache
friendly parallel programs on the Origins often means

optimizing the data placement in physical memory to achieve
'memory locality' such that the memory access time is

minimized for each process.

NCPUS

1 or2

Maximum

Route Hops
0

Latency

485 ns

3 or 4 1 585 ns

5-8 2 685 ns

9-16 3 785 ns

17-32 4 885 ns

33-64 5 985 ns

Table 6. Max hops and latency

6.1 Page

For virtual memory system such as the Origins, memory is

allocated by the operating system to a user's program in unit of
page. The defautt page size on the Origins is 16KB. However,

a system can be configured to set aside certain number of
larger pages (ex: 64KB, 256KB, 1MB, 4MB, etc. defined in
/var/sysgen/stune) to be used by programs that request using
them. The command bsview' (select option 3) allows you to

see how many pages of each large page size (>16KB) are

available (not being used yet) in each node.
A frequently overlooked concept regarding pages is that a

page is the "smallest continuous memory" that the operating
system can allocate to your program. For example, in a
program, if the size of an array is exactly n pages, the array

elements may be spread among n pages or n+l pages
depending on whether the allocation of this array starts at the

beginning of a page. These n or n+l pages can not be split and
allocated among the memory of more than n or n+l nodes
since only a 'whole' page can be allocated in memory.

However, the array can still be accessed by as many

processors as desired (ex: >> 2n processors on O2K or >> 4n
on O3K). In this circumstance, the performance will not scale

beyond 2n processors on O2K or 4n processors on O3K if the

program is memory intensive.

6.2 Data Placement

For parallel programs, memory locality management (i.e.,

placing data in unit of page in or near the local memory of the
CPU that needs these data) is an important factor to achieve

good parallelism (speedup and scalability). The Irix operating
system is capable of taking care of many memory locality

needs automatically. In addition, users can fine-tune data
placement by (i) choosing a specific data placement policy

through MP library environment variables, (ii) enabling page
migration, (iii) adding certain compiler directives in the

program, (iv) using dplace tool, and (v) adding runtime calls

to specific library routines. In the following, the two most
common approaches, namely, using the first touch placement

policy and the round-robin placement policy are described.
The default data placement policy on the Origins is 'first

touch placement'. With this policy, memory for a page is
allocated in the node whose CPU(s) first touches this page. If
this is not possible, this page is allocated in a node as close as

possible to the CPU that first touches this page. This
placement policy is usually good for programs the exhibit

good locality to a processor.

A common practice of initializing all data by a single CPU
with the first touch placement policy often creates bottlenecks

during real computation. This is due to the facts that (1)
memory references by most other CPUs will be non-local and
(2) the traffic to the memory of a single node is jammed by the
requests from many CPUs. A simple remedy is to parallelize

the initialization step so that data can be distributed to the
memory of many CPUs that first touch each page.

With round robin placement, pages are distributed to
memory in many nodes in a round robin fashion. The benefits

of this placement policy are two-fold. The first is that data will
be distributed 'randomly' (though not optimal) and thus it is

good for programs where all CPUs tend to access all data
equally. The second is that memory access will not be satisfied

by a single node thus preventing a bottleneck.
To use round-robin placement policy, no modification to the

code is required. One simply sets the following environment

variable before executing the program:

setenv DSM_ROUND_ROBIN

• 3 Qu_

Assume on an O2K, there are two CPUs in each node and
on an O3K, there are four CPUs in each node. The default

page size is 16KB per page.

(1) Using an O2K machine, if the size of array a is 48KB,
in the following program, how would array a be

allocated in memory if one sets
setenv OMP_SET NUMTHREADS 3?

real a(48KB)

!$OMP PARALLEL DO

do I= 1,n
initialize a(i)
end do

(2) if everythingissameas(1)exceptonesets
setenvOMPSET_NUMTHREADS4, how would

arrayabeallocatedinmemory?
(3) if everythingissameas(1)exceptthatanO3Kmachine

isused,howwouldarrayabeallocatedinmemory?
(4) if everythingissameas(1)exceptthatthepagesizehas

beenchangedto64KBperpage,howwouldarrayabe
allocatedinmemory?

(5) if everythingis sameas(1) exceptthattheOpenMP
directiveintheprogramisremovedandonethensets
setenvDSM_ROUNDROBIN,howwouldarrayabe

allocatedinmemory?

6.4 Detecting Memory Placement Problem

a. Poor scaling
b. dlook

c. dsm_home_threadnum
d. ssrun -numa

One can suspect memory placement problems if everything
else (ex: cache contention, load imbalance, etc.) has been

checked and fixed and yet scaling is still poor. A few tools are

available for examining memory placement. The tool dlook
provides an easy way to examine how data (stack and heap

data with page size information) are placed when processes
exit. If sampling is enabled, (by using - sample n), data is also

displayed every n seconds. To obtain a dlook output, use the -
out option:

dlook -out dlook output ./a.out

In addition to dlook, one can obtain more detailed

information about data placement by using the

dsm_home_threadnum0 intrinsic within the program. This
function takes an address as an argument, and returns the

number of the CPU in whose local memory the page
containing that address is stored. It is used in Fortran as
follws:

integer dsm_home threadnum
numthread = dsm_home_threadnum(array(i))

Since two CPUs are connected to each node of an O2K and

they share the same memory, dsm_home threadnum returns

the lowest CPU number of the two running on the node with

the data. Note that the numbering of CPUs reported by
dsm home_threadnum is relative to the program, not the
number of absolute physical cpu. The benefit of using
dsm home_threadnum0 over dlook is that one can find out

where each specific data is stored, and with additional

engineering of the code, which process is accessing this data.
The drawback is that one has to instrument the code manually

and it is non-trivial to analyze the information obtained.
In the past, no profiling tool would definitively inform you

that poor performance of a code is caused by poor data

placement. In the most recent release of SpeedShop version
1.4.3), a new experiment type (ssrun -numa) is provided that

allows much easier diagnosis of memory placement problems.

The output of this experiment reports the percentage of remote
memory access (number of remote memory accesses/total
memory access sampled) and the average ccNUMA routing

distance. To use this experiment, do, for example:

ssrun -numa ./a.out

prof a.out.numa.m1234 > a.out.numa.m1234.out

6.5 Memory Placement Example

In appendix C, a sample program is provided for examining
performances of three different memory placement
approaches. This program is modified from example 8-7 of the

SGI document "Origin 2000 and Onyx Performance Tuning

and Optimization Guide".
The three different approaches are:

(a) Use the program in appendix C as it is. The
initialization loop is not parallelized.

(b) Use the program in appendix C as it is. The

initialization loop is not parallelized. However, "setenv
DSM_ROUND_ROBIN"

is used during run-time.
(c) Modify the program in appendix C such that the

initialization loop is parallelized with OpenMP

directive "?$OMP PARALLEL DO private(i)
shared(a,b,c,d)". DSM_ROUND_ROBIN is not set in
this case.

The original and modified codes are compiled with -O3 - ,_

rap. For each of the three approaches, the variable raters _s
read in from stdin as 100. During run time, different numbers
of CPUs are used by setting "setenv
OMP_SET_NUMTHREADS n" where n varies from 1 to 32.

An O2K machine with 250MHz R10000 CPU, 4MB L2 cache,

and 490MB memory per node is used during execution.

4 i

3.5 I

31

2.5
2

1.5

1

0.5

0

_ Fi_ t-Touc h_ o_ial4rlit ial i_ First -To_t_P arml_-_rit ill

0 20 40

I0

80

70

60

50

40

30

20

10

0

0

L_e"=" Firs bTouch'Senai-lrit ial i

•--I--- Round-Rc_,in

Firs DTouc h4_ arallet-I nil ial

20 40

Figure 4 shows the performances of each of the three
approaches. In figure 4(a), the real time (y-axis), in seconds as

obtained from the function dtime and reported as t2 in the

program, spent on the intialization is plotted as a function of n
(x-axis) set by OMP_SET_NUMTHREADS (which is same as
NCPUS for the whole program). As seen in this figure, for the

first two approaches using the original code, the real time is
roughly the same no matter what the value of n is. This is

expected since only 1 processor is responsible for initializing
the arrays with either first-touch or the round-robin placement
policy. On the contrary, for the third approach where the

initialization loop is parallelized, the time spent on
initialization decreases gradually as more processors are
added.

In figure 4(b), for each of the three approaches, the real

time (y-axis), reported as t3 in the program, spent on real work
is plotted as a function of n (x-axis) set by

OMP_SET_NUMTHREADS. For the first approach, where
data are most likely localized to the node whose CPU first
touches all pages, the performance is better using 2 CPUs than

1 CPU. This is because the memory references are still local
for the two CPUs in a single node. However, increasing the

number of CPUs beyond 2 CPUs does not decrease the
walltime any more since memory references will be non-local

for any CPUs other than the first two.

For the second approach, data are placed in the memory of
many nodes in a round-robin fashion. For this program, as
seen in figure 4(b), the walltime spent on real work decreases

as more CPUs (and thus, more memory in different nodes are
available for data placement) are added. Similar behavior is

seen for the third approach. In addition, the performances
using the third approach are better than the second due to more

optimum data placement.

7. Conclusion

Code optimization and parallelization on the Origins as well

as other parallel systems is a muiti-faceted task.
Understanding the few basic issues described in this paper is

essential for building a solid foundation and for easier

transition to learning other related subjects. Training or

workshops provided by vendors or others are good sources for
getting an overview of many relevant topics. However,

attending these sessions is usually not adequate. For the
Origins, the SGI document "Origin 2000 and Onyx

Performance Tuning and Optimization Guide" is a good

reference to keep handy. Many examples provided in this
document are quite useful. In addition, it is important to (1) do
more hands-on experiments, and (2) when things do not work

"as expected", find out the cause(s) of the "misbehavior". It is
through these hands-on experiments and thorough

investigation that the author finds most effective in learning to

proceed with code optimization and parallelization on parallel
systems.

Acknowledgments

Support from the NASA Advanced Supercomputing
Division under contract numbers ARC320.000.2 and

ARC330.000.2 is acknowledged.

About the Author

Sherry Chang received her Ph.D. in Theoretical Chemistry
from the University of California at Berkeley in 1991. Before

joining NASA, she was a research scientist at the Molecular
Research Institute performing research in areas of quantum

chemistry, molecular dynamics and homology modeling of
biological systems. At present, she is a Scientific Consultant at

the NASA Advanced Supercomputing Division of NASA
Ames Research Center. E-mail: schan_@nas.nasa._ov

Appendix

A. Cache Thrashing Sample Program

1 program L2_cache thrashing
2

3! Arrays a, b, c, and d are all 4MB in size. Accessing a(i,j),
b(id)

4! cod), and d(id) simultaneously causes L2_cache_thrashing
when
5! the size of L2 cache is either 4MB or 8MB

6! with 2-way set associativity
7

8 dimension a(1024,1024), b(1024,1024), c (I 024,1024),
d(1024,1024)
9

10 call random_number(b)
11 call random_number(c)

12 call randomnumber(d)
13

14 do j=1,1024
15 do i=1,1024

16 a(id)=b(id)+c(id)*d(id)
17 end do

18 end do
19

11

2{)write(12) a
21

22 stop
23 end

B. False Sharing Sample Program

program false_sharing
parameter (m=4,n=lO0000)
real a(n,m),s(m)

real*4 dtime,tarray(2)
tl=dtime(tarray)
do i=l,m

do j= 1,n

a(j,i)=(i+j)/5000.O
end do

end do

t2=dtime(tarray)
do k=l,lO0

call sum85(a,s,m,n)
write (6,*) k= ',k

write (6,*) s
end do

t3=dtime(tarray)

print *, 'time on initialization = ', t2
print *, 'time on real work = ', t3

stop
end

subroutine sum85 (a,s,m,n)

integer m, n, i, j
real a(n,m), s(m)
!$omp parallel do private(ij), shared(s,a)
doi=l,m

s(i) = 0.0

doj = 1, n
s(i) = s(i) + a(j,i)
enddo
enddo
return
end

C. Memory Locality Sample Program

program memory locality

integer i, j, n, niters
parameter (n = 8*1024*1024,ndim = n+35)
real a(ndim),b(ndim),c(ndim),d(ndim),q

real*4 dtime,tarray(2)

read *, hirers

print *, ' niters = ', niters

! initialization

tl=dtime(tarray)
! comment 1

doi= l,n
a(i) = 1.0 - 0.5"i

12

b(i) = -10.0 + O.01*(i*i)
c(i) = 2"i - 0.3
d(i) = 0.5"i

enddo

t2=dtime(tarray)

! real work

do it = 1, niters

q = O.Ol*it

!$omp parallel do private(i) shared(a,b,c,d,q)
doi=l,n

a(i) = a(i) + q*b(i)

c(i) = c(i) + d(i)

a(i) = a(i) + sqrt(c(i))
enddo

call sub(a,b,ndim)
enddo

t3=dtime(tarray)

print *, a(1), a(n), q
print *, 'time on initialization = ', t2
print *, 'time on real work ='t3
end

subroutine sub(a,b,ndim)

real a(ndim), b(ndim)
return
end

